Filling a Penny Album

Shiyong Lu
Steven Skiena
Department of Computer Science
State University of New York
Stony Brook, NY 11794-4400
{shiyong—skiena}@cs.sunysb.edu

October 19, 1999

Most coin collectors can trace their interest in the hobby back to that childhood day
when they were given an empty coin album and encouraged to fill it up. This typically
blue, typically cardboard album contained slots the size of the lowest denomination coin in
circulation (such as the United States one cent piece or ‘penny’), with each slot labeled with
the year in which that coin was minted. Filling the album requires collecting one coin of
each mintage year.

The first few days of owning an album are always marked by great success, with many
slots quickly getting filled. As the days pass, progress gets slower and slower, as we keep
getting repeated instances of previously collected years. The excitement builds as the number
of slots gets whittled down one by one. Filling in the last slot marks the satisfying end of a
quest.

Can we predict how many coins we will be expected to see before we complete an album?
Determining an answer requires modeling the process by which coins are removed from
circulation and then solving an interesting variant of the famous coupon collector’s problem.
In this article, we try to determine the number of United States pennies one must assay to
construct a complete collection of Lincoln Memorial Cents.

How Often Do I Get a 1959 Penny?

The probability of seeing a coin minted in a given year in circulation is a function of mintage,
age, and collector pressure. The mintage is the number of coins issued in a given year.
Mintages vary widely as a function of the demand for new coins in circulation. Certain years
have high mintage, certain years low mintage.

The age of a coin is the number of years since it was minted. Older coins become scarcer
as they get lost from circulation. The older a coin is, the more people that have handled it,
and hence the more likely it is to disappear behind a sofa or down a drain.



Year | Sampled Predicted || Year | Sampled Predicted || Year | Sampled Predicted
1939 1 0 1966 11 8.8 1982 73 97.3
1940 1 0 1967 15 12.5 1983 76 84.7
1941 1 0 1968 16 20.4 1984 69 83.6
1950 1 0 1969 19 24.5 1985 70 68.2
1952 1 0 1970 17 24.2 1986 74 57.1
1955 3 0 1971 22 24.2 1987 78 62.5
1956 1 0 1972 29 27.6 1988 71 75.9
1957 2 0 1973 15 35.9 1989 89 86.3
1958 1 0 1974 41 42.9 1990 65 82.5
1959 6 6.5 1975 47 49.3 1991 68 66.8
1960 11 10.0 1976 35 45.1 1992 63 66.7
1961 3 9.0 1977 40 44.9 1993 114 90.9
1962 8 8.8 1978 40 52.2 1994 129 104.7
1963 10 9.5 1979 44 55.2 1995 140 106.5
1964 25 24.8 1980 60 69.8 1996 172 105.6
1965 7 5.9 1981 67 73.2 1997 49 75.8

Figure 1: Distribution of Dates in $20 Worth of Pennies, as Sampled and Predicted.

The final factor is collector pressure. Sufficiently old coins become uncommon as collectors
perceive interest and value. Also, coins with obsolete designs tend to be removed from
circulation by collectors. For example, in 1959, the United States introduced an image of
the Lincoln Memorial on the back of each penny, replacing the ‘Wheatback” penny reverse
which had been in use since 1909. Today, it is a fairly unusual occurrence to find a wheatback
penny, as collectors have tossed them aside for years.

We propose a simple exponential decay model to predict the frequency of circulating coins
which have not been subject to collector pressure. Let M; denote the number of coins minted
i years ago. We assume that any coin has a probability of p to be retained in circulation (i.e.
not lost) during a given year. Therefore, the number of coins minted i years ago which are
still in circulation should be p’ - M;.

We let p denote the decay coefficient of the coin denomination. But what is the value of
p for United States pennies? To help answer this question, on April 20, 1998 we withdrew
2,000 pennies (i.e. $20 worth) from the Stony Brook branch of the Teachers Federal Credit
Union. A summary of what we found appears in the first column of Figure 1. Only 12 of
the 2000 pennies were wheatbacks (pre-1959), and so for simplicity we will disregard the
existence of these coins in the remainder of the article. The mintage figures of U.S. Lincoln
Cents for each year from 1959-1997 appear in standard numismatic references such as R. S.
Yeoman’s A Guidebook of United States Coins, Western Publishing, Racine Wisconsin.

Estimating the Decay Coefficient

Given a value for the decay coefficient, we can compute the proportion of the coins in
circulation from each mintage year and the number of representatives from each mintage
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Figure 2: Distribution of United States Pennies in Circulation

year that would be expected in a sample of 2000 coins (actually 1988 coins in our sample).
To estimate the decay coefficient, we compute the value of p that minimizes the difference
between our actual sample and the expected count. Our prefered criterion is the sum of
the squares of the relative differences (the difference divided by the expected count). We
did not use the figures from 1997 in minimizing the sum of squares, since we did not have
full mintage figure for that year. The resulting estimate of p is 0.976. The corresponding
estimate of coins in circulation is more than 234 million. Figure 2 gives the mintage figure
for each year along with the estimated coins in circulation from the exponential decay model.
The second column of Figure 1 gives the expected counts corresponding to the exponential
decay model; there is a good agreement with the sample.

It is natural to wonder how sensitive our analyses are to the optimization criterion used
to estimate p, and to assess the sampling variability in our estimate. To access sampling
variability, we generate 100 random sets of pennies by sampling with replacement from our
actual sample. We estimate p for each sample and use these estimates to assess sampling
variability. This is a statistical technique known as the bootstrap. We also consider two
alternative criteria: ordinary least squares (minimizing the sum of squared differences be-
tween observed and expected counts) and minimum chi-squared (minimizing the sum of the
squares of the differences divided by the square root of the expected count). The results
are summarized in Figure 3. Sampling variability is quite small but the results are sensitive
to criteria. Figure 2 presents the coins in circulation estimate for all of the criteria. Small
differences in p leads to substantial differences in the number of coins estimated to be circu-
lating. We use the relative difference criterion because it seems to fit best for the rare, early
dates which are crucial to fill the penny album.



Criteria Mean Min Max  Std. Dev | Predicted Pennies in Circulation
Least Square 0.9492 0.9407 0.0959 0.004 165,521,321,515
Relative Diff 0.9764 0.9673 0.9856 0.003 234,894,161,052
Min Chi-Square | 0.9624 0.9568 0.9715 0.003 194,969,089,381

Figure 3: Variation in optimal decay coefficient p over 100 random coin samples, according
to three different optimization criteria.

The Weighted Coupon Collectors Problem

Suppose a coupon collector needs to collect a complete set of n coupons (each with a distinct
number from 1 to n) in order to get a prize. Assuming that one coupon is enclosed within a
box of (say) cereal, what is the expected number X of cereal boxes the collector must buy
in order to capture the prize? In the best case, buying n boxes will suffice, however we will
likely have to buy substantially more because of duplicates.

This so-called coupon collector’s problem has a simple and elegant solution when the
coupons occur with equal probability, i.e. the probability of the next box containing coupon
i is p; = 1/n. To solve this problem, we partition the process of collecting coupons into n
phases — each phase we wind up with a new distinct coupon that is not in the collection yet.
Let X; denote the number of boxes bought in the i** phase. For the first phase, all coupons
are new, so X; = 1. For the second phase, the next box contains a duplicate with probability
1/n and a new distinct coupon with probability (n —1)/n. We keep selecting boxes until we
find a distinct coupon. The number of boxes is described by the geometric distribution with
probability of success (n — 1)/n, so the expected value of X, is n/(n — 1). Once phase two
completes we continue to phase three. In general, the probability that the next box contains
a new distinct coupon (which indicates the end of phase i) is (n — i + 1)/n, and hence the
expected number of boxes in this phase is n/(n — i + 1). The total waiting time is the sum
of the phases. Then the expected waiting time is

Z _Z+1—n2 ~nlnn
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where In is the natural logrithm and the last approximation is valid for large n. Our collector
should budget to buy approximately nlnn cereal boxes.

However, our penny collecting problem is complicated by the fact that the number of
pennies in circulation from different mintage years is not the same. In the general coupon
collectors problem, the probabilities p, po, ..., p, of the n coupons are not equal. The solution
to this more general case was first published by Herman Von Schelling in 1954 in the American
Math. Monthly. For the weighted case, he shows that the expected number of boxes required
to get a full set is
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Though we don’t repeat the proof here, it is interesting to look a bit more at this result.
Suppose that we divide the general coupon collecting procedure for this general problem
into 7 phases such that phase 7 is only concerned with collecting the i coupon. Since the
i coupon occurs with probability p;, the expected time for phase i is 1/p;. If each phase
was independent, the total coupon collection time would be Ei? 1/p;. This is the first term
of our formula. It is clear that this is too big, because at any point we accept any unseen
coupons. How should we correct for this overestimate? Von Shelling’s formula is analogous
to the inclusion-exclusion formula for the size of a set intersection. The second term corrects
the first term by substracting off a term that corresponds to the expected time when each
pair is sampled. The result is an underestimate so the third term is used to correct the

underestimate. The terms alternate to produce the final result.

Computational Issues

Evaluating the general coupon collectors formula requires generating all 2" subsets of coupon-
types, since there is one term for each subset in Von Shelling’s formula. These combinations
can be exhaustively generated. However, since the number of such combinations grows
exponentially, the formula can be practically computed only for small values of n.

Since this formula requires time exponential in n, we propose a less expensive way to
compute a lower bound on the expected number of pennies. Let us define a m < n such
that we can solve instances of the weighted of size m in a reasonable amount of time. With
current, technology, a reasonable value might be m ~ 20.

Our approach to a lower bound is to partition the n items into m groups, and compute the
exact weighted coupon collector time to get at least one representative from each group. The
results of any such partitioning will give us a lower bound on the coupon collector solution of
the n items. Our approach to the partitioning was to sort the coupons in increasing order of
probability, and take as our partition m — 1 singleton groups comprising the m — 1 smallest
probabilities, and one group consisting of the n — m + 1 items of highest probability. The
intuition behind this partitioning is that it is much more likely that the last coin inserted
into the album is a low probability representative than a high probability one.

Our approach to the upper bound is again based on partitioning into groups. We divide
the n coupons into k = [ <] groups, and divide the collecting procedure into & phases: In
phase 7, we seek to collect one of each of the coupons in group ¢, and one of the coupons
not in group i (We bunch all the other coupon types into another separate group, say
complementary group ¢’ and consider it as one type of coupon with the possibility of the
sum of all the possibilities of coupon types in group i'). After all of the phases are completed,
we have a complete set of coupons. However, in phase 7, those coupons in the complementary
group 7' will also be covered by one of the other phases. This fact indicates the result would
be an upper bound.




Least Square Relative Diff Min Chi-Square
Expected Number 1313.763 683.888 945.994
Lower Bound 1313.762 683.867 945.990
Upper Bound 1437.081 809.299 1068.397

Figure 4: Projected number of pennies needed under three difference optimization criteria.

A Small Study

Now we can put all these results together to determine bounds on the number of Lincoln
Memorial pennies needed to fill the album.

The years 1959-1997 comprise 39 dates of pennies, whose estimated frequency in circu-
lation is given in Figure 2. Figure 4 gives the value of our upper and lower bounds for all
three optimization criteria, using a group size of m = 20. In quest of tighter bounds, we
did exhaustive calculations as well, each of which ran for about 2.3 CPU days on the fastest
machine available in our department. In fact, under our preferred measure we expect to see
683.888 coins before filling our penny album, which is extremely close to the more quickly
computed lower bound.

On January 27, 1999, we went through a set of accumulated pennies to see how long it
took to collect all years. In fact, on the 630th coin we obtained the 1962 penny needed to
complete our collection — quite in accord with our results.

Our story thus far has focused only on the expected number of coins. In our actual study
with real coins, it took 630 coins to get a full set, a bit less but quite close to the expected
value. It is natural to wonder how much variability there is in the coin collecting process.
Again, the typical coupon collector’s problem admits a straightforward discussion because
the standard deviation of the number of boxes to get a complete set has an accessible (but
complicated) formula. There is no formula for the weighted case. To give some idea, we
simulated filling an album using 30 random permutations of the 2000 pennies of our original
sample. The average collecting period was 714.1 coins, ranging from a low of 296 to a high
of 1413.

Filling a penny album remains an affordable goal for children young and old.
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